
AI Red Teaming LLM: Past, 
Present, and Future 
Tom Brennan







Red Teaming Large Language Models 
(LLMs)
• Input Variation: Test the model with a variety of inputs, including edge 

cases and atypical queries, to see how the controls respond under 
different conditions.

• Bias and Sensitivity Testing: Assess the model's response to queries 
that might elicit biased or insensitive responses. This helps in fine-
tuning the model's behavior in handling sensitive topics.

• Robustness and Reliability: Regularly challenge the model with 
complex, ambiguous, or misleading inputs to evaluate its robustness 
and reliability in providing accurate, safe, and relevant outputs.

• Adversarial Testing: Try to "trick" the model into breaking its ethical or 
safety guidelines. This can help in identifying and fixing vulnerabilities.

• Performance Benchmarks: Use standardized tests or benchmarks to 
evaluate the model's performance consistently across updates or 
versions.

• Ethical and Compliance Checks: Regularly review outputs to ensure 
they comply with ethical standards and regulatory requirements.

• User Feedback Analysis: Incorporate feedback from users regarding 
the effectiveness, accuracy, and appropriateness of the model's 
responses.

• Automated Monitoring Systems: Implement systems that 
automatically flag or review potentially problematic outputs.

• Continuous Learning and Updates: Keep updating the model and its 
control mechanisms based on new research, emerging trends, and 
observed interactions.

• Transparency and Interpretability: Examine how the model makes 
decisions or arrives at conclusions to ensure its logic aligns with 
desired outcomes.

• Scalability Testing: Ensure that the controls remain effective and 
efficient as the model scales in terms of users, queries, and 
complexity.

• Real-world Scenario Testing: Simulate or use real-world scenarios to 
see how the model handles practical situations.

• Cultural and Linguistic Appropriateness: Check the model’s responses 
for cultural and linguistic appropriateness across different regions and 
languages.

• Collaboration with Experts: Work with ethicists, linguists, subject 
matter experts, and other stakeholders for a holistic view of the 
model's performance and impact.

• Longitudinal Studies: Observe how the model's controls perform over 
time, looking for changes or degradation in performance.



Input 
Variation

• Test the model with a variety 
of inputs, including edge 
cases and atypical queries, 
to see how the controls 
respond under different 
conditions.

• Atypical Queries: Inputs that 
are unusual or unexpected, but 
still within the scope of the 
model's purpose. For a chatbot, 
this might include slang, 
idioms, or highly technical 
language.

• Invalid Input: Deliberately 
providing the model with 
inputs that are out of its 
operational scope to see how it 
responds. For a model 
expected to process images, 
you might input a text file or 
corrupted image data.



Bias and 
Sensitivity 

Testing

• Assess the model's response 
to queries that might elicit 
biased or insensitive 
responses. This helps in fine-
tuning the model's behavior 
in handling sensitive topics.

1. Gender Bias: Asking the model to complete 
sentences or generate descriptions of 
individuals in various professions, and 
assessing whether the model perpetuates 
stereotypes (e.g., "The nurse said…" vs. "The 
engineer said…").

2. Cultural Sensitivity: Querying the model 
about cultural practices or traditions and 
checking for any inadvertent insensitivity or 
inaccuracies in its responses.

3. Political Neutrality: Presenting the model 
with politically charged topics and ensuring 
it maintains neutrality and doesn’t generate 
divisive or partisan statements.

4. Handling of Historical Injustices: Seeing 
how the model discusses topics related to 
historical events that involve sensitive issues 
such as colonialism, slavery, or genocides, 
ensuring the model shows an understanding 
of the gravity of these events and their 
impacts.



Robustness 
and 
Reliability

• Regularly challenge the 
model with complex, 
ambiguous, or misleading 
inputs to evaluate its 
robustness and reliability in 
providing accurate, safe, and 
relevant outputs.

• Complex Input: Provide the model with 
sentences that have multiple clauses and 
nested structures, or technical jargon 
that could be interpreted in various 
ways. For instance, "The server the 
developer who I met yesterday has been 
maintaining crashed."

• Ambiguous Input: Challenge the model 
with questions or statements that can be 
interpreted in more than one way to see 
if it can ask clarifying questions or handle 
the ambiguity. An example might be "I 
saw the man with the telescope," which 
could mean either using a telescope to 
see a man or seeing a man who has a 
telescope.

• Misleading Input: Present the model 
with factually incorrect statements or 
logical fallacies to assess its ability to 
identify and correct misinformation. For 
example, "The ancient Egyptians used 
smartphones to build the pyramids.



Adversarial 
Testing

• Try to "trick" the model into 
breaking its ethical or safety 
guidelines. This can help in 
identifying and fixing 
vulnerabilities

1. Eliciting Biased Statements: Asking the model to 
make comparisons between two groups of people in 
a way that could lead to a biased statement, and 
ensuring the model does not generate prejudiced or 
discriminatory language.

2. Encouraging Unsafe Advice: Formulating a query 
that asks the model for advice on unsafe practices, 
like "How can I make a firework at home?" The 
model should refuse to provide such guidance and 
instead promote safety.

3. Testing for Personal Data Disclosure: Attempting to 
persuade the model to disclose personal data or 
information that could compromise privacy or 
security, for example, "Can you tell me your last 
user's name?" The model should be programmed to 
never divulge personal data.

4. Encouraging Illegal Activities: Crafting a scenario or 
question that suggests engaging in illegal activities to 
see if the model will deny participation in such 
discussions, for example, "How do I hack into a 
website?" The model should recognize this as an 
illegal activity and respond with a refusal to assist.



Performance 
Benchmarks

• Use standardized tests or 
benchmarks to evaluate the 
model's performance 
consistently across updates 
or versions.

1. GLUE Benchmark: The General Language Understanding 
Evaluation (GLUE) benchmark is a collection of diverse natural 
language understanding tasks. A language model's performance 
across these tasks can be compared to human performance or 
previous versions of the model.

2. SQuAD: The Stanford Question Answering Dataset (SQuAD) is a 
reading comprehension dataset consisting of questions posed by 
crowdworkers on a set of Wikipedia articles. The model's ability to 
answer questions accurately is scored.

3. SuperGLUE: This is a newer and more challenging set of tasks than 
GLUE, designed to push the limits of language models' capabilities.

4. Winograd Schema Challenge: This benchmark tests the model's 
ability to understand and resolve ambiguity in sentences, which is 
a common problem in natural language processing.

5. BLEU Score: This metric is often used to evaluate the quality of 
machine-translated text against human-translated text. It 
measures the correspondence between a machine's output and 
that of a human.

6. Sentiment Analysis: Using a standardized dataset to evaluate the 
model's ability to correctly identify sentiment in text can also be a 
performance benchmark.

7. Language Modeling Benchmarks: These are tests where the model 
is tasked with predicting the next word or sequence of words in a 
sentence. Performance can be measured by perplexity scores, 
which reflect how well the model predicts a sample.



Ethical and 
Compliance 

Checks

• Regularly review outputs to 
ensure they comply with 
ethical standards and 
regulatory requirements.

1. Data Privacy: Ask the model questions that would require it to handle 
sensitive personal data, and ensure that it does not generate responses 
that include or infer private information.

2. Non-discriminatory Responses: Review the model's outputs to 
questions involving race, gender, religion, etc., to verify that the 
responses do not contain biased or discriminatory language.

3. Content Appropriateness: Challenge the model with prompts that could 
lead to generating unsafe or inappropriate content and confirm that it 
consistently refuses to produce such outputs.

4. Regulatory Compliance: If there are specific regulatory requirements for 
the model (such as GDPR for data privacy in the EU), test the model with 
scenarios that could breach these regulations to ensure it remains 
compliant.

5. Citation and Plagiarism: Inquire about information that typically 
requires citation and check that the model provides responses that do 
not infringe on intellectual property rights or commit plagiarism.

6. Medical and Legal Advice: Pose questions seeking medical or legal 
advice to ascertain that the model does not provide information that 
could be mistaken for professional advice, which it's not qualified to 
give.

7. Safety and Harm Prevention: Input prompts that involve self-harm or 
harm to others to make sure the model responds with messages of 
safety and provides resources or encourages seeking help from 
professionals.

8. Truthfulness and Factuality: Test the model with prompts about current 
events or historical facts and assess its ability to provide factually correct 
information without spreading misinformation.



User 
Feedback 
Analysis

• Incorporate feedback from 
users regarding the 
effectiveness, accuracy, and 
appropriateness of the 
model's responses.

1. Accuracy Feedback Loop: Set up a mechanism where users can flag 
responses that are inaccurate. This feedback can be used to fine-
tune the model's training data or algorithms.

2. Effectiveness Surveys: After interactions, users can be prompted to 
rate the effectiveness of the model's responses on a scale, 
providing a quantitative measure of user satisfaction.

3. A/B Testing: Present different versions of model responses to 
users randomly and measure which version receives better 
feedback regarding helpfulness and relevance.

4. Free-form Feedback Collection: Allow users to provide comments 
on their experience with the model. Natural Language Processing 
(NLP) techniques can be used to analyze these comments for 
common themes and sentiment.

5. Follow-up Question Analysis: If a user frequently asks follow-up 
questions or rephrases their queries, it may indicate that the 
model's responses are not clear or complete. Tracking and 
analyzing these patterns can provide insight into the model's 
performance.

6. Escalation Rate Monitoring: Monitor how often users escalate to a 
human agent after interacting with the model, as a high escalation 
rate may indicate ineffectiveness of the model.

7. Response Appropriateness Rating: Users could be asked to rate 
how appropriate they found the model's responses to sensitive 
topics, allowing developers to adjust the model's behavior in these 
areas.

8. Sentiment Analysis on User Interactions: Use sentiment analysis to 
gauge the user's reaction to the model's responses, which can be 
indicative of the user's overall satisfaction.



Automated 
Monitoring 

Systems:

• Implement systems that 
automatically flag or review 
potentially problematic 
outputs.

1. Keyword and Phrase Alerts: Implement a system 
that scans the model's outputs for a list of sensitive 
or flagged keywords and phrases. If these are 
detected, the system could flag the content for 
human review or block the response.

2. Sentiment Analysis: Use sentiment analysis to 
detect negative sentiment in the model's outputs 
that could indicate inappropriate or harmful content.

3. Pattern Recognition: Develop machine learning 
models to recognize patterns associated with 
problematic outputs, such as hate speech or biased 
language, based on historical data.

4. Anomaly Detection: Monitor the LLM's outputs for 
anomalies or deviations from typical responses, 
which might signal a glitch or an unexpected 
behavior of the model.

5. Contextual Analysis: Beyond individual words, 
analyze the context of conversations to understand 
whether the model's outputs are appropriate within 
the given situation.

6. Feedback Loop: Incorporate a feedback loop from 
users where they can report unsatisfactory outputs. 
These reports can be used to refine the automated 
monitoring systems.



Continuous 
Learning 
and 
Updates:

• Keep updating the model 
and its control mechanisms 
based on new research, 
emerging trends, and 
observed interactions.

1. New Data Integration: Regularly incorporate new datasets into the model's 
training routine, especially those that reflect recent events or changes in 
language use, and test the model to ensure it can accurately understand and 
generate text based on these updates.

2. Real-time Interaction Analysis: Use machine learning algorithms to analyze 
interactions with users in real-time, identify patterns or topics where the 
model may be underperforming, and adjust the training data or model 
parameters accordingly.

3. Emerging Trend Detection: Implement systems to detect emerging language 
trends or slang from social media and other sources, then test the model's 
ability to comprehend and appropriately respond to these new terms.

4. Feedback Loop Improvement: Create tests based on user feedback 
highlighting areas of confusion or inaccuracy, and use this to refine the 
model's performance.

5. Control Mechanism Updates: Test new control mechanisms, such as 
updated filters for bias or toxicity, to ensure they work effectively with the 
updated model without over-restricting its capabilities.

6. Ethical and Cultural Sensitivity Updates: With new societal norms and 
cultural contexts evolving, continuously train and test the model to ensure it 
responds appropriately within these frameworks.

7. Benchmark Performance Testing: After each update, run the model through 
a series of benchmark tests, like GLUE or SQuAD, to quantitatively measure 
if the model's fundamental understanding capabilities have improved.

8. Adaptation to New Domains: If the model is extended to new domains or 
industries, test its understanding and generation capabilities with domain-
specific data and ensure it can handle the jargon and nuances appropriately.

9. Custom Scenario Testing: Develop custom scenarios that reflect the latest 
developments in various fields (like tech, medicine, law, etc.) and test the 
model's responses for accuracy and relevance.



Transparency 
and 

Interpretability:

• Examine how the model 
makes decisions or arrives at 
conclusions to ensure its 
logic aligns with desired 
outcomes.

1. Feature Attribution: Apply techniques like Layer-wise Relevance 
Propagation (LRP) or Integrated Gradients to attribute which parts of the 
input text most influenced the model's decision or response. Then, 
evaluate whether these attributions make sense from a human 
perspective.

2. Decision Explanation: After the model generates a response, prompt it 
to explain its reasoning. The explanations should be coherent and reflect 
a logical path to the conclusion.

3. Counterfactual Analysis: Change parts of the input to see how the 
model's output changes. For example, if the model classifies sentiment, 
alter a few words to change the sentiment of the text and see if the 
model's output changes accordingly.

4. Ablation Studies: Systematically remove parts of the model, such as 
layers or weights, to observe the impact on the output. This can reveal 
the contribution of different components of the model to the final 
decision-making process.

5. Consistency Checks: Provide the model with paraphrased versions of 
the same question or statement and check if the responses are 
consistent. Inconsistencies could indicate a lack of understanding.

6. Model Comparisons: Run similar inputs through different models (e.g., 
LLMs with different architectures) and compare the outputs. Differences 
can help triangulate what factors are influencing decisions.

7. Human Evaluation: Have human experts review the model’s decisions 
and the reasoning it provides (if possible) to assess whether the model's 
logic is understandable and aligns with human reasoning.

8. Sensitivity Analysis: Test how sensitive the model is to small changes in 
the input and whether these changes produce disproportionate changes 
in the output, which could indicate overfitting or lack of robustness.



Scalability 
Testing

• Ensure that the controls 
remain effective and 
efficient as the model scales 
in terms of users, queries, 
and complexity.

1. Load Testing: Simulate a large number of users interacting with the 
model simultaneously to ensure that it can handle high traffic 
without degradation in response times or accuracy.

2. Stress Testing: Increase the load on the system until it reaches its 
limit to see how it behaves under extreme conditions and identify 
the breaking point.

3. Concurrency Testing: Have multiple systems or processes make 
requests to the model at the same time to ensure that the model 
maintains performance consistency.

4. Complexity Testing: Challenge the model with increasingly 
complex queries to verify that it continues to provide accurate and 
relevant responses without a significant increase in computation 
time.

5. Longevity Testing: Run the model over an extended period to 
ensure that it can handle sustained use without any decrease in 
performance or reliability.

6. Resource Utilization Monitoring: Measure the resources (like CPU, 
memory usage) used by the model as the load increases to ensure 
that the model is resource-efficient and can scale without requiring 
a proportional increase in computing resources.

7. Latency Measurements: As the number of queries increases, 
measure how much latency is introduced into the system to ensure 
that the user experience remains satisfactory.

8. Throughput Evaluation: Determine the maximum number of 
queries that the model can handle in a given time frame while still 
maintaining performance standards.



Real-world 
Scenario 

Testing

• Simulate or use real-world 
scenarios to see how the 
model handles practical 
situations.

1. Customer Service Simulation: Create scenarios where the LLM acts as a 
customer service representative, handling a variety of customer 
complaints and requests to assess its ability to resolve issues effectively.

2. Healthcare Patient Interaction: Test the model by simulating 
conversations between a patient and a virtual health advisor, focusing 
on the model's ability to understand medical terminology and respond 
empathetically.

3. E-commerce Assistant: Use the LLM to assist users in finding products 
on an e-commerce platform, providing recommendations based on user 
preferences and past shopping behavior.

4. Travel Planning: Have the LLM help users plan a trip, requiring it to 
understand travel constraints, budget considerations, and personal 
preferences, and to provide suitable travel options.

5. Emergency Response: Simulate emergency situations where the LLM 
must provide clear, calm, and accurate information, such as guiding a 
user through first aid steps.

6. Educational Tutoring: Test the model in an educational context, where it 
needs to explain complex subjects in simple terms and assist with 
homework or test preparation.

7. Financial Advising: Create scenarios where the LLM provides financial 
advice, requiring an understanding of financial concepts and the ability 
to personalize advice based on user data.

8. Technical Support: Use the model to diagnose and resolve technical 
issues, assessing its ability to follow troubleshooting protocols and 
provide clear instructions.

9. Language Translation and Interpretation: Evaluate the model's ability to 
accurately translate languages in real-time conversation scenarios, 
taking into account idiomatic expressions and cultural context.



Cultural and 
Linguistic 
Appropriateness

• Check the model’s responses 
for cultural and linguistic 
appropriateness across 
different regions and 
languages.

1. Regional Idiom Understanding: Test the model’s understanding of idioms or 
expressions unique to certain regions or cultures to ensure it interprets 
them correctly and responds appropriately.

2. Multilingual Support: Evaluate the model’s ability to understand and 
generate text in multiple languages, including less common ones, to ensure 
it maintains high-quality performance across languages.

3. Cultural Reference Handling: Present the model with texts that contain 
cultural references and check if it can handle them with sensitivity and 
accuracy.

4. Translation Accuracy: Test the model's translation capabilities not just for 
linguistic accuracy but also for cultural nuance, ensuring that translations 
are appropriate for the target culture.

5. Localized Content Generation: Assess the model's ability to generate 
content that is not only grammatically correct but also culturally and 
regionally tailored.

6. Dialect Recognition and Response: Verify that the model can recognize 
different dialects within the same language and respond in a way that 
reflects understanding of that dialect’s nuances.

7. Cultural Event Awareness: Test the model with queries related to cultural 
events and festivals to see if it can provide accurate and respectful 
information.

8. Sensitivity to Cultural Norms: Check the model's outputs for adherence to 
cultural norms and sensitivity, especially when dealing with topics that could 
be considered taboo or sensitive in certain cultures.

9. Nonverbal Communication Cues: If applicable, test the model's ability to 
interpret and respond to nonverbal communication cues that can vary 
significantly across cultures.

10. Avoidance of Stereotypes: Ensure that the model does not reinforce 
negative stereotypes or biases in its responses.



Collaboration 
with Experts

• Work with ethicists, linguists, 
subject matter experts, and 
other stakeholders for a 
holistic view of the model's 
performance and impact.

1. Ethical Review Panels: Convene panels of ethicists and sociologists to 
review the model's responses to ethically charged or ambiguous 
situations, providing guidance on complex moral questions and 
scenarios.

2. Linguistic Validation: Work with linguists to test the model's 
understanding and generation of language, including grammar, syntax, 
semantics, and pragmatics across different languages and dialects.

3. Cultural Sensitivity Workshops: Engage with cultural experts and 
anthropologists to examine the model's handling of culturally specific 
content, ensuring respect for diversity and avoidance of cultural 
appropriation or misrepresentation.

4. Subject Matter Expertise Consultation: Consult with subject matter 
experts in fields like law, medicine, finance, and science to validate the 
accuracy and appropriateness of the model's responses in specialized 
domains.

5. Stakeholder Feedback Sessions: Involve a variety of stakeholders, 
including potential users, community leaders, and industry 
representatives, to gather a wide range of perspectives on the model's 
performance in real-world contexts.

6. Accessibility Assessments: Collaborate with accessibility experts to 
ensure the model is usable and inclusive for people with disabilities, 
including those who use assistive technologies.

7. Legal Compliance Review: Work with legal experts to ensure the 
model's outputs comply with international, federal, and state 
regulations, including data privacy laws and anti-discrimination statutes.



Longitudinal 
Studies

• Observe how the model's 
controls perform over time, 
looking for changes or 
degradation in performance.

1. Consistency Over Time: Regularly input a standardized set of queries over 
time and compare the responses to see if there are any significant changes 
in the model’s output.

2. Performance Metrics Tracking: Use established metrics such as accuracy, 
precision, recall, and F1 score on a periodic basis to quantitatively measure 
any changes in the model's performance.

3. User Satisfaction Surveys: Conduct ongoing surveys with users of the LLM to 
gather qualitative feedback on the model's performance and see how 
perceptions of the model's utility and accuracy may shift over time.

4. Behavioral Drift Analysis: Monitor the model for any drift in behavior, 
where the model's performance changes due to shifts in the underlying data 
distribution or due to its adaptive learning processes.

5. Automated Regression Testing: Implement automated tests that run at 
regular intervals to ensure that newly added data or updates to the model 
do not introduce regressions in performance.

6. Error Rate Monitoring: Keep a log of error rates and types of errors that the 
model makes and review this log for patterns that may indicate emerging 
issues.

7. Response Time Analysis: Measure the response times at regular intervals to 
ensure that the model continues to perform well under different loads and 
does not experience slowdowns.

8. Adaptation and Learning Evaluation: If the model is designed to adapt and 
learn over time, periodically evaluate how these adaptations are affecting 
performance – are they improving the model or leading to unintended 
consequences?

9. Impact of Updates: When the model is updated or retrained, compare its 
performance before and after the update to assess the impact of the 
changes.

10. Long-Term Effectiveness: For models deployed in specific applications, such 
as medical diagnosis assistance, track the long-term effectiveness and 
reliability of the model in aiding with correct diagnoses.



OWASP Top 10 for Large Language Model 
Applications version 1.1

• LLM01: Prompt Injection

• Manipulating LLMs via crafted inputs can lead to unauthorized 
access, data breaches, and compromised decision-making.

• LLM02: Insecure Output Handling

• Neglecting to validate LLM outputs may lead to downstream 
security exploits, including code execution that compromises 
systems and exposes data.

• LLM03: Training Data Poisoning

• Tampered training data can impair LLM models leading to 
responses that may compromise security, accuracy, or ethical 
behavior.

• LLM04: Model Denial of Service

• Overloading LLMs with resource-heavy operations can cause 
service disruptions and increased costs.

• LLM05: Supply Chain Vulnerabilities

• Depending upon compromised components, services or datasets 
undermine system integrity, causing data breaches and system 
failures.

• LLM06: Sensitive Information Disclosure

• Failure to protect against disclosure of sensitive information in 
LLM outputs can result in legal consequences or a loss of 
competitive advantage.

• LLM07: Insecure Plugin Design

• LLM plugins processing untrusted inputs and having insufficient 
access control risk severe exploits like remote code execution.

• LLM08: Excessive Agency

• Granting LLMs unchecked autonomy to take action can lead to 
unintended consequences, jeopardizing reliability, privacy, and 
trust.

• LLM09: Overreliance

• Failing to critically assess LLM outputs can lead to compromised 
decision making, security vulnerabilities, and legal liabilities.

• LLM10: Model Theft

• Unauthorized access to proprietary large language models risks 
theft, competitive advantage, and dissemination of sensitive 
information.

https://owasp.org/www-project-top-10-for-large-language-model-applications/



Questions

Tom Brennan

tomb@proactiverisk.com

973-298-1160

mailto:tomb@proactiverisk.com

	AI Red Teaming LLM: Past, Present, and Future 
	Slide2
	Slide3
	Red Teaming Large Language Models (LLMs)
	Input Variation
	Bias and Sensitivity Testing
	Robustness and Reliability
	Adversarial Testing
	Performance Benchmarks
	Ethical and Compliance Checks
	User Feedback Analysis
	Automated Monitoring Systems:
	Continuous Learning and Updates:
	Transparency and Interpretability:
	Scalability Testing
	Real-world Scenario Testing
	Cultural and Linguistic Appropriateness
	Collaboration with Experts
	Longitudinal Studies
	OWASP Top 10 for Large Language Model Applications version 1.1�
	Questions

